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Abstract—A model for the radial heat transfer of a grooved heat pipe evaporator is presented. It combines

the solution of a two-dimensional heat conduction problem with the calculation of the shape of the liquid—

vapour interface and its temperature, taking into account the influence of meniscus curvature and adhesion

forces on the volatility of the liquid. It is shown that the common assumption of an interface temperature

equal to the saturation temperature of the vapour can lead to a large overprediction of the radial heat
transfer coefficient.

INTRODUCTION

HEeAT prpeES with open trapezoidal grooves for the
liquid transport are of great practical interest as they
can easily be fabricated. However, the prediction of
the radial heat transfer coefficient of these heat pipes
is still a problem.

The radial heat transfer depends on the geometry
of the wall and the liquid, and the boundary con-
ditions (see Fig. 1). These are usually the pressure p,
of the vapour inside the heat pipe, which is assumed
to be constant over the cross-section, and the tem-
perature T; at the outside. The symmetry planes
between the grooves are adiabatic surfaces. The dry
areas of the grooves, where no evaporation occurs,
can also be considered as adiabatic if one neglects the
relatively small convective cooling of these areas by
the vapour. If g, is the average heat flux at the outside
surface of the heat pipe, the radial heat transfer co-
efficient is defined by

Tf - Tsat (1)

where T, is the saturation temperature corre-
sponding to the vapour pressure p,.

The complications in this two-dimensional heat
conduction problem arise from the fact that neither
the temperature T, of the liquid—-vapour interface nor
its shape are explicitly given.

Several authors [1-5] calculated radial heat transfer
coefficients with one- or two-dimensional heat con-
duction models with the simplifying assumptions that
the interface temperature T;, is equal to T, and that
the interface has a constant curvature K. An unknown
wetting angle 9 was incorporated as a free parameter
in these models. Both Schneider er al. [1] and
Shekriladze and Rusishvili [4] derived a correlation
for the radial heat transfer coefficient, which describes
their numerical results. Comparing the results with
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experimental data, Schneider ef al. concluded that the
predicted values were too high.

Wayner et al. [6, 7] have shown that the assump-
tions T}, = T, and K = constant are not valid in a
very small ‘micro region’, where the meniscus comes
close to the wall. This is primarily due to the transverse
pressure gradient in the liquid phase, which is neces-
sary for transporting the liquid in the micro region to
the evaporating surface, and which leads to very large
curvatures of the meniscus. These in turn lead to a
significant decrease of the volatility of the liquid and a
corresponding rise of the interface temperature above
T,... For a correct modelling of these phenomena
account must be taken of the interaction between
the liquid molecules and the wall atoms in the micro
region. The resulting adhesion forces cause a steady
transition of the evaporating meniscus into a flat non-
evaporating film of microscopic thickness, which is
adsorbed on the ‘dry’ part of the groove. The large
curvature of the meniscus in this region creates macro-
scopically the impression of a finite wetting angle 3.
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Fic. 1. Element of the heat pipe wall with a liquid filled
trapezoidal groove.
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dispersion constant [J]

top width of the groove [m]

bottom width of the groove [m]
evaporation coefficient

thickness of heat pipe wall [m]
radial heat transfer coefficient
Wm™*K™]

specific heat of vaporization [J kg~ ']
curvature of the meniscus [m™']
evaporation rate [kgm~?s™']
coordinate normal to the interface [m]
pressure [Pa]

heat flow per unit groove length
(Wm~']

heat flux [Wm ™7

radius of curvature of the meniscus
[m]

gas constant [Jkg™ 'K ™)
temperature [K]

groove width [m]

coordinate parallel to the heat pipe wall
[m]

coordinate normal to the heat pipe wall

[m].

S Y
g.‘q\@ BN

>

[

O X I X

Sy e

=N

<

NOMENCLATURE

Greek symbols
8(¢&) shape of the liquid-vapour interface [m]
n dynamic viscosity [Pa s]

i thermal conductivity [Wm™ 'K~ '}
v kinematic viscosity [m2s™']
¢ coordinate parallel to the groove surface
[m]
p  density [kgm™?]
o surface tension of the liquid [Nm™']
3 apparent wetting angle
¢  half groove angle.
Subscripts

c capillary
f outside of the heat pipe wall

in  input

iv. vapour side of the liquid-vapour interface
1 liquid

mac macro region

mic micro region

8 solid

sat  saturation

v vapour

w  groove wall.

Wayner’s model was applied by Kamotani to an
aluminium/ammonia heat pipe for calculating the
heat transfer through the micro region and the appar-
ent wetting angle 3 [8]. Holm and Goplen combined
a simplified version of the Wayner model with a one-
dimensional analysis of the radial heat transfer
through heat pipe walls with trapezoidal grooves [9].

The objective of the present paper is to analyse
quantitatively the consequences which the simplifying
assumptions T;, = T, and K = constant have on the
modelling of the radial heat transfer coefficient of a
heat pipe evaporator. For this purpose a model has
been developed which combines Wayner’s treatment
of the liquid phase in the micro region with the two-
dimensional solution of the heat conduction problem
in the cross-sectional area shown in Fig. 1, the ‘macro
region’, which also comprises the micro region.

In the following paragraphs the model equations
for the micro and the macro region are presented. The
numerical treatment of both regions, their coupling
and the iterative computational procedure are
explained. Finally, the model is used for computing
an example for the radial heat transfer coefficient of
the evaporator of an aluminium/ammonia heat pipe.
The results are compared with predictions from the
simplified models.

+ The validity of this assumption we checked by comparing
the calculated normal temperature gradients with those par-
allel to the groove wall, which were found to be several orders
of magnitude smaller.

MODELLING OF THE MICRO REGION

The model of the micro region goes back to Wayner
et al. [6, 7]. We use it in a mathematical form which
is similar to that introduced by Kamotani [8].

The heat conduction through the liquid is assumed
to be one-dimensional, normal to the wall of the
groove.t The extremely small thickness of the liquid
layer in the micro region makes it necessary also to
consider the interfacial heat resistance. Then the heat
flux ¢ can be written as

5 To/QrR,T.) (2—
q‘=(Tw—Tiv)/(Z+ J,ﬁfz’; ’(sz))

2

where 0 is the local thickness of the liquid layer (see
Fig. 2). The temperature T, of the groove wall in
this equation is considered as a function of the ¢&-
coordinate (Fig. 2) as it depends on the heat con-
duction through the wall.

The relation between the temperature T, at the
vapour side of the liquid~vapour interface and the
saturation temperature 7, is given by

Pe
T, =Tal 1+ : 3
l( hfgpl> ( )

The capillary pressure p, can be expressed as

A
D= oK+ F (4)
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Fig. 2. Coordinate systems, temperatures and groove
dimensions.

The first term describes the influence of the meniscus
curvature K. The second term is a pseudo capillary
pressure which allows one to describe the effect of
the adhesion forces. It goes back to the ‘disjoining
pressure’ concept of Deryaguin et al. [10]. A4 is the
dispersion constant. Some investigators use the
Hamaker constant 4 = 6n4 instead of 4. The cur-
vature K is connected with the thickness of the liquid

layer é by
d*s do Yy y?
@ 0@) o

For the modelling of the transverse liquid flow a one-
dimensional laminar boundary layer approximation
is used in the micro region. From the conservation of
mass and the momentum equation the evaporation
rate can be expressed as

¢ 1.d{f .dp
" e 3wde (‘5 a ) ©
Combining equations (2) and (6) one obtains a fourth
order differential equation for the film thickness 6(¢) :

o Tsa! 2nR Tsat 2—
(G Bl 7

_ hg d f dp.

T 3y, dé <‘$ de ) @
T, and p, are given as functions of ¢ by equations (3)—
(5). T, (&) has to be provided as an input resulting

from the solution of the heat conduction problem in
the macro region.

t Rigidly, the temperature at the liquid side of the interface
should be used instead of T,,. However, the difference has
a negligible influence on the macro heat transfer and the
computed T.,.
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HEAT CONDUCTION MODEL IN THE MACRO
REGION

The heat transfer through the heat pipe wall and
the liquid in the groove is described by the two-dimen-
sional heat conduction equation

V-(AV(T)) =0 (8)

where A is the thermal conductivity of the liquid or
the solid phase, respectively. The boundary conditions
are (see Fig. 2):

T = T; at the outside of the heat pipe wall (y = 0),
0T/0x = 0 at the symmetry lines (x = 0 and w/2),
T=T,t at the liquid—vapour interface (x,<x <
w/2) and

0T/dn = 0 at the ‘dry’ part of the groove (adsorbed
film, 0 <€ x < x,), neglecting vapour convection.

NUMERICAL TREATMENT

The calculation of the meniscus shape and heat
transfer in the micro region and the solution of the
heat conduction problem in the macro region require
different numerical approaches. Since the solution of
each problem is needed as input for the other one,
they are solved in an iterative procedure.

Micro region

The fourth order differential equation (7) is written
as a system of four first order differential equations
and integrated using a Runge-Kutta method. The
unknown wall temperature T, is read from a data file,
containing the solution of the macro region.

For the integration the initial values of J and its
first three derivatives have to be specified at £ =0
where the meniscus is connected to a non-evaporating
liquid film. For given temperatures T, and T, the
capillary pressure p, at £ = 0 follows from ¢ = 0 with
equations (2) and (3). The slope dd/d¢ is set to zero.
K is set to a very small value (6K =~ 10~ "p,.). The
initial value of ¢ is calculated from equation (4).
d®6/d&? is chosen so that the integration ends in a
meniscus with a desired curvature. The integration is
stopped at a value of ¢ where the influence of the
vapour pressure p, on the interface temperature T;,
and the change of the curvature K with £ have become
negligible. Numerical experiments showed that, for
given T, and T,, all menisci in the groove practically
do not differ from each other in the micro region.
Therefore, it is in general sufficient to compute only a
single meniscus in the micro region. The slope of this
meniscus then yields the apparent wetting angle 3 to
be used for the calculation in the macro region.

Macro region

Following the work of Schneider et al. [1], a finite
element method is chosen to solve the heat conduc-
tion problem described in equation (8). Triangular
elements with quadratic functions are used. As noted
by Schneider et al., the mesh generation is most impor-
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tant in finding a solution within a desired accuracy.
An additional problem is caused by the micro region.
The grid width in the micro region is extremely small.
On the other hand, the difference in size of two adjac-
ent elements must not be too large to reach conver-
gence. Therefore the numbers of nodes and elements
become very high.

The micro region is modelled by several elements.
The meniscus curvature outside the micro region is
set to a constant value which corresponds to a given
capillary pressure outside the micro region p. mac-

The boundary condition at the interface, the tem-
perature Ty, is read from a file containing the solution
of the one-dimensional computation in the micro
region.

Iteration between micro region and macro region

The iteration procedure is shown in Fig. 3. The
calculationis started in the micro region with the given

start

input:
jgeometry, properties
Teat, Tfy Pe,mac

1

inital guess:

71

w,mic = constant

micro code

output:

8,9, Tiu, Q12)

mic

center meniscus

in the groove

macro code

calculate new

1
Ty mic = const.

calculate
hrad

F1G. 3. Iteration scheme for the computation of the radial
heat transfer coefficient.

boundary conditions and an assumed constant value
of the wall temperature in the micro region T, ...
The computed meniscus shape 8, the apparent wetting
angle 3, the temperature distribution 7, at the inter-
face and the total heat transferred in the micro region

Qmic = f{ qdé (9)

are stored. According to the apparent wetting angle §
and the capillary pressure p. .. the meniscus is then
centred in the groove.

The finite element program for the macro region is
activated using the interface temperature 7, and the
meniscus shape J calculated before. The resulting heat
flux and temperature distribution in the wall and in
the liquid are stored.

The computations in the micro and in the macro
region are repeated with different constant wall tem-
peratures T, .., until the computed heat transported
through the wall into the micro region has become
equal to Q.-

Now the procedure is started again, using the com-
puted distribution of the wall temperature T,(£) in
the micro region instead of a constant value. The
iteration is stopped when the results of the two models
do not change any more.

RESULTS AND DISCUSSION

As an example, an aluminium/ammonia heat pipe
with T.,. = 300K and 7, = 301.31 K has been studied.
The material properties and the geometry of the
groove structure used are listed in Table 1. The
grooves were chosen to be of triangular shape.

The value of the dispersion constant 4 used in the
present example has been estimated on the basis of refs.
{11, 12], which indicate that these values are usually of
the order of 10~ %! J. However, numerical experiments
showed that the dispersion constant has only a small
influence on the meniscus shape and on the heat flux.
Using a dispersion constant of 4 = 1 x 107*' Jinstead
of A =2x10~?"J in the example changed the radial
heat transfer coefficient by less than 3%.

The results for the micro region are summarized in
Fig. 4, which shows the phenomena occurring in the
region where the liquid layer & is thinner than 1077
m. At first the meniscus approaches the wall with a
practically constant slope, which defines the apparent
wetting angle 3. In this part the meniscus still has
essentially the same curvature as in the macro region
(the curvature is too small to be noted in the small
scale of the diagram). The evaporating heat flux ¢
rises in correspondence with the decreasing thickness
of the liquid layer. The interface temperature 7, is
practically identical to T, until § approaches values
of 10~ m. Then T, rises rapidly to the value of the
wall temperature 7, at £ =0, whichis 301.0K. As a
result, ¢ passes through a sharp maximum of 5300 W
cm™* and then drops to zero.
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Table 1. Data for the computation of the presented example

Properties of materials (liq.: NH;; sol.: Al) at 7, = 300K

Specific heat of evaporation A, 1180 x 103 Jkg™!
Gas constant R, 488.00 Jkg 'K~
Density of saturated vapour p, 9.00 kgm™*
Density of liquid p, 600.00 kgm~?®
Thermal conductivity of solid A, 221.00 Wm'K-!
Thermal conductivity of liquid 4, 0.480 Wm K
Surface tension o 0.020 Nm~!
Dynamic viscosity of liquid #, 1.30x 104 Pas
Dispersion constant A 2.00x% 102! J
Evaporation coefficient f 1.00 —
Groove geometry
Groove width w 1.0x 1073 m
Groove height H 1.5x 103 m
Top width a 0 m
Bottom width b 0 m
Half groove angle ¢ 45.0 deg
Boundary conditions
Main capillary pressure g e 220 Nm™?
Outer wall temperature 7; 301.31 K
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FI1G. 4. Meniscus shape, heat flux and interface temperature in the micro region.

The rise in T, is caused by the increasing capillary
pressure p. (see equation (3)) which is required to
drive the transverse flow of the liquid. At the begin-
ning of the rise in T;, the meniscus is still too far away
from the wall for the adhesion forces to contribute
to p., so that the rise in p, is produced by a strong
increase of the curvature of the meniscus (R, =1/
K. ~ 1077 m). This leads to a rapid bending of
the meniscus and the generation of a finite apparent
wetting angle 3 = 19.7°. At the end of the rise in T},
the 6~ power of the adhesion force term produces
the necessary capillary pressure, while the curvature

goes to zero and the meniscus levels off into a flat non-
evaporating film.

The total heat transferred per unit groove length in
the regionup to £ =2x107"mis Q =34 Wm~"',
which agrees with Kamotani’s value [8]. The total
heat transferred in the micro region (here: 0 < &
1x107°m)is Qe = 6.6 Wm™'.

The computation in the macro region shows that
the transfer of Q.. through the heat pipe wall into
the micro region requires an average heat input of
G = 3.0 W cm~2 The adsorbed liquid film covers
about 15% of the groove.
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FiG. 5. Plot of T}, T, and T, over a logarithmic, dimensionless length coordinate.

Figure 5 is a semi-logarithmic plot of the tem-
peratures T, T, and T,. It shows that T, is nearly
constant in the micro region. Therefore it does not
seem to be necessary to consider the exact distribution
of T, (¢) in the micro region. Test calculations have
confirmed that the results almost do not change if the
correction of the constant wall temperature in the
micro region T, .. is left out (see outer loop in Fig.
3). Figure 6(a) shows the same temperatures over a
linear length scale. The rise in T}, appears here as a step
change. The radial heat transfer coefficient defined in
equation (1) i$ A, = 2.3 W em 2 K~'. About 23%
of the total heat in the groove goes through the very
first part of the evaporating film (0 < £ <2x 10" "m)
and about 45% through the micro region.

If the interface temperature T;, is set constant to
Ty, like in previous papers, a much different tem-
perature distribution appears in the heat pipe wall and
in the liquid for the same values of T;and T, and the
same geometry, as is shown in a comparison of Figs.
6(a) and (b). The top of the groove is now cooled
down by evaporation, more heat goes through the
evaporator wall (¢, = 10.4 W cm~?) and one gets a

higher radial heat transfer coefficient (f,4 =79 W
cm™ 2 K™"). The fraction of heat going through the
micro region now is 94%. Figure 7 shows the iso-
therms in the macro region in the case of a computed
interface temperature (Fig. 7(a)) and in the case of a
constant interface temperature equal to 7, (Fig.
7(b)). As can be seen, the consideration of the correct
interface temperature is decisive for the temperature
profile in the whole heat pipe wall, although T, is
different from the saturation temperature only in the
micro region. Numerical experiments showed that the
distribution of the temperature 7, in the micro region
is not so much responsible for the change, but the
total temperature rise T, (¢ = 0) — T,,,, which governs
the temperature of the whole top part of the heat pipe
wall.

The essential numerical results are summarized in
Table 2. The radial heat transfer coefficient, in the case
of a calculation with a constant interface temperature
T., = T, agrees with the value calculated from the
correlation of Schneider within the indicated accuracy
of 15% [1]. The present paper shows that this value
is about three times too high due to the assumption

Table 2. Essential results of the computation and comparison with simplified models

Present paper Schneider [1] Shekriladze [4]
T.=T¢) T=Tu T =T v = T
Ti— T [K] 1.31 1.31 — —
Gio [Wem~™7 3.0 10.4 — —
Ouic/ Oin [%] 45 94 — —
Brag [Wem™2 K] 2.3 7.9 ~6.9 ~3.9
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5.

FI1G. 7. Isotherms in the heat pipe wall and in the liquid phase. (a) Present model. (b) Assuming T, = Ty
and K = constant (temperature difference between two isotherms: AT = 0.0202 K).

of a constant interface temperature. This may explain
the difference to the experimental values noted by
Schneider. The value calculated with the simplifying
correlation given by Shekriladze and Rusishvili [4] is
about twice as high as the value in the present

paper.

CONCLUSION

The presented model allows the calculation of the
radial heat transfer coefficient in heat pipes with open
grooves. The given example shows that it is necessary
to take into account the influence of meniscus cur-
vature and adhesion forces on the relation between
vapour pressure and interface temperature. The micro
region where the meniscus comes close to the wall
is decisive for the apparent wetting angle and the
temperature of the dry part of the groove wall. The
assumption of an interface temperature 7}, equal to
the saturation temperature 7, of the vapour intro-

duces an artificial cooling of the top of the groove and
can lead to a large overprediction of the radial heat
transfer coefficient.
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ANALYSE DU COEFFICIENT D’ECHANGE DE CHALEUR DE L’EVAPORATEUR D’UN
CALODUC A RAINURES

Résumé—On présente un modéle de transfert radial de chaleur a travers ’évaporateur d’un caloduc a

rainures. La solution en deux dimensions d’un probléme de conduction de la chaleur est couplée a

I’estimation de la forme de l'interface liquide-vapeur et sa température. Le modéle prend en compte

Pinfluence de la courbure du ménisque et des forces d’adhésion sur la volatilité du liquide. On montre que

I’hypothése courante, qui suppose 1'égalité de la température de I'interface et la température de saturation
de la vapeur, peut conduire & une forte surestimation du coefficient d’échange radial de chaleur.

STUDIE DES WARMEDURCHGANGSKOEFFIZIENTEN IN DER VERDAMPFUNGSZONE
EINES WARMEROHRES MIT OFFENEN KAPILLARRILLEN

Zusammenfassung—Ein Modell zum radialen Warmedurchgang in der Verdampfungszone eines Wirme-
rohres mit offenen Kapillarrillen wird vorgestellt. Die Losung eines zweideimensionalen Warmeleit-
problems ist gekoppelt mit der Berechnung der Form und der Temperatur der Grenzkurve zwischen
fliissiger und dampfformiger Phase. Dabei werden sowohl der Einflu der Kriimmung der Phasengrenze,
als auch der der Adhisionskrifte auf die Verdampfung beriicksichtigt. Es wird gezeigt, daB die bliche
Annahme, die Temperatur der Phasengrenze sei gleich der Sattigungstemperatur des Dampfes, zu einer
erheblichen Uberschitzung des radialen Wiarmedurchgangskoeffizienten fithren kann.

AHAJIU3 KO®PUIIMEHTA TEIJIONNEPEHOCA OT CTEHOK UCIIAPUTEJIS
TEIJOBOX TPYBBI C HAHECEHHBIMYA HA HUX KAHABKAMH

Amnoramus—ONHCHIBACTCS MOZENb PafHAILHOIO TETUIONEPEHOCA OT MCHAPHTENS TeMsIoBOH Tpybul ¢©

HaHECCHHBIMH HA CTCHKY KaHaBKaMH. MoJeih BKJIIOYAET PEILCHHE ABYMEPHOH 3aJa4M TEILIONpOBOA-

HOCTH H onpenelcHue GOPMBI H TEMIEPATYphl PaHHUBI pas’Aena XHAKOCTh-TIAP ¢ YYETOM BIIHAHMS

KPHBH3HLI MCHHCKAa H a[TC3HOHHBIX CHJI Ha JIETy4ecTh kuakocTH. [Tokasano, yro obwenpunsToe npen-

TI0JIOKEHHE O PABEHCTBE TEMMEPATYPHl HA IPAHMIC PAa3fesa M TeMNepaTyphl HACHILEHAS Hapa [IPHBO-
IMT K 3HAYUTEILHOMY 3aBLILICHHIO K03QdHLMEHTa PaquabHOTO TEIUIONIEPEHOCA.



